Чтобы запомнить новую информацию, нужно хорошо выспаться

PsyAndNeuro.ru

В последние годы в биологической психиатрии доминирует нейромедиаторная теория. Действительно, актуальность нейромедиаторной теории подтверждается большим числом биологических исследований (содержание нейромедиаторов в ткани мозга, изучение полиморфизмов генов, вовлеченных в обмен нейромедиаторов), а также клинической практикой, ведь успешное применение препаратов, действующих на систему нейротрансмиттеров, предопределяет справедливость теории. Однако есть и альтернативные теории, набирающие популярность. Об одной из таких теорий доложил доктор Ил Хван Ким (Dr. Il Hwan Kim) из университета Дюка в рамках своего семинара в центре наук о здоровье университета штата Теннессии (UTHSC). Его доклад назывался “Изучение нейрональных сетей мозга, относящихся к психиатрическим симптомам” (изобр.[1]).

Изображение 1. Объявление о семинаре (слева), доктор Ил Хван Ким в лаборатории (справа).

Наверняка многие врачи и биологи, да и в целом все, кто изучал физиологию в высших учебных заведениях, слышали про белок актин. Вероятнее всего слово актин сразу ассоциируется со словосочетанием актин-миозиновый комплекс, вспоминаются нервные волокна и дикие для второкурсника теории мышечного сокращения. Кто-то вспомнит про цитоскелет – белковые структуры, которые поддерживают форму клетки такой, какой ей и следует быть. Сразу же из глубин памяти вылезут туманные микрофиламенты, тубулины и кератины. Однако если вы хорошо знакомы с нейроцитологией и нейрогистологией, то вспомните также, что актин играет важную роль в синапсообразовании: небольшие отростки дендритов (дендритные шипики) могут появляться и исчезать, помогая при этом формировать новые синапсы на своей поверхности. Именно благодаря дендритным Шипкам и синаптической динамике нервная система может эффективно обрабатывать и реализовывать информацию и поддерживать свою пластичность в целом.

Формирование дендритных шипиков основано на явлении полимеризации актина, а также ветвлении актиновых структур. Как видно из рисунка [изобр.2], для ветвления актина требуется специальный комплекс белков Arp2/3. Этот комплекс “садится” на материнский актиновый филамент, и на его базе начинает расти дочерний актиновый филамент. Таким образом и формируется древообразная структура, которая создает дендритные шипики, на основе которой и держится все волшебство нервной системы.

Изображение 2. Схема ветвления актиновых филаментов (адаптировано из (4)).

Тут уже не сложно догадаться, что если система дендритных шипиков нарушена, то можно ожидать нейро-когнитивныый дефицит, или же, по меньшей мере дисбаланс. На рисунке (изобр.[3]) показаны отростки нейронов дикого типа мыши (верхние изображения) и с прижизненно выключенным (нокаутированным) комплексом Arp2/3 (нижние изображения). Как можно заметить, существующие дендритные шипики у мутантов исчезают, а новые не появляются. Eсть исследования, которые показывают, что мутантнтные мыши, по комплексу Arp2/3 демонстрируют ненормальное локомоторное поведение (1). Более того, Arp2/3-мутантные мыши после введения антипсихотиков (галоперидол, клозапин) демонстрируют нормализацию поведения. А статья (2) обсуждает шизофрению в контексте изменения экспрессии гена Arp2/3.

Изображение 3. Динамика дендритных шипиков у мышей дикого типа (верхний ряд) и с инактивированным геном ArpC3 (нижний ряд) в течении восьми недель (адаптировано из (3)).

На рисунке (изобр.[4]) показаны данные, полученные с использованием анализа моторной активности мышей (общая длина передвижений) у мышей с интактным и инактивированным геном ArpC3 (это субъединица комплекса Arp2/3) с применением галоперидола (0.1 мг/кг, 0.2. мг/кг) и клозапина (0.5 мг/кг). Показаны три временные точки после введения антипсихотиков. В исследовании использовали Cre-LoxP систему инактивации гена, для простоты интерпретируем это как инактивированный ген (по-научному это генотип Arpc3 f/f; Camk2a-Cre).

Можно сразу заметить по первым двум столбцам, что у мышей с инактивированным геном ArpC3 общая дистанция передвижений значительно больше, чем у мышей с интактным геном (примерно в 6 раз). Анализируя диаграммы дальше можно заметить, что с течением времени антипсихотические средства сокращают разницу в моторной активности между мышами с интактным и инактивированным геном.

Читайте также:  Полезно знать об ЭКЗЕМЕ (eksem)

Ответ мутантных мышей на антипсихотические препараты объясняется тем, что потеря функциональной активности комплекса Arp2/3 непосредственно влияет на дофаминэргические синапсы сообщения вентральной области покрышки и черной субстанции (DA-producing VTA/SNc neurons).

Изображение 4. Сравнение уровня моторной активности мышей дикого типа и с инактивированным геном ArpC3, без и с использованием антипсихотических средств, использованы три временные точки (адаптировано из (1))

На данный момент нет однозначных данных, описывающих биологическую сторону психической симптоматики, но регулярно появляется информация о новых генах, которые могут вносить вклад в ее развитие. Обзор о конкондартности шизофрении описывает наследуемость шизофрении на основании близнецовых исследований. В целом сомнений в генетической природе/компоненте психической патологии остается все меньше, однако пройдет еще много лет, прежде чем в психиатрическую практику войдут диагностические системы оценок рисков и предимплантационная диагностика. Расширение понимания биологических основ психиатрии существенно увеличит рецепторный арсенал психофармакологии, позволит проводить более селективную терапию и даже откроет возможности для доманифистационной коррекции в психиатрии.

Автор текста : Крат С.

  1. Kim, Il Hwan, et al. “Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine.” Nature neuroscience 18.6 (2015): 883.
  2. Datta, Dibyadeep, et al. “Altered expression of ARP2/3 complex signaling pathway genes in prefrontal layer 3 pyramidal cells in schizophrenia.” American Journal of Psychiatry 174.2 (2016): 163-171.
  3. Kim, Il Hwan, et al. “Disruption of Arp2/3 results in asymmetric structural plasticity of dendritic spines and progressive synaptic and behavioral abnormalities.” Journal of Neuroscience 33.14 (2013): 6081-6092.
  4. Helgeson, Luke A., and Brad J. Nolen. “Mechanism of synergistic activation of Arp2/3 complex by cortactin and N-WASP.” Elife 2 (2013): e00884.

Роль шипиков в нервной системе

Строение аксона и дендрита.

Аксон соединяет тело клетки с тем органом, который контролирует клетка и от которого она получает сигналы (или которому передает их); именно из аксонов состоит белое вещество мозга. Строение аксона очень напоминает строение кабеля. Внутренний канал, содержащий тонкие нити фибриллярных белков, окружен миэлиновой оболочкой; в ее состав входят различные липиды и белки. По-видимому, при образовании этих оболочек осевой цилиндр аксона вдавливается в оболочку шванновской клетки, протоплазма ее удаляется и аксон обматывается мембранами шванновской клетки, как электрический кабель изолирующими материалами. В тех местах, где граничат миэлиновые мембраны соседних шванновских клеток, на аксоне образуются характерные перехваты — перехваты Ранвье. Внутри аксона, в аксоплазме, имеются не только аминокислоты, пептиды и их производные, но и ионы калия, кальция, натрия и др., играющие существенную роль в передаче нервного возбуждения.

Роль шипиков в нервной системе.

Дендритный шипик — мембранный вырост на поверхности дендрита, способный образовать синаптическое соединение. Шипики, в частности, выполняют роль отдельных клеточных компартментов, предотвращающих изменения в содержании ионов в цитоплазме материнского дендрита при активной работе синапсов.

Шипики, несущие синапсы на дендритах корковых клеток, появляются именно в возрасте, когда развивается условно-рефлекторная деятельность. Дополнительные указания на роль шипиков в механизмах памяти дали эксперименты, показавшие интенсивное развитие их синаптического аппарата у животных в результате выработки условных рефлексов.

Признан факт, что чем больше шипиков на дендритах нейрона, чем больше ветвление дендритов, тем шире рецептивное поле нейрона и тем больше возможностей для образования синаптических контактов

Зачем нейрону дендриты, а дендритам шипики

Многие нервные клетки похожи на кусты или деревья: их выходной отросток, аксон, — тонкий корешок этого дерева, все остальные многочисленные отростки — дендриты. Дендриты обычно отходят от тела клетки в виде толстых стволов, которые затем делятся на несколько более тонких ветвей, те, в свою очередь,— на еще более тонкие и т. д. Длина дендритов в десятки раз превышает диаметр нервных клеток, а толщина концевых веточек очень мала — может составлять доли микрометра. Вопрос о том, какую роль играют дендриты в работе нервных клеток, до сих пор окончательно не решен и, скорее всего, у разных нейронов их роль различна. В частности, у одних клеток мембрана дендритов невозбудима и может передавать сигналы только электротонически, как пассивный кабель, а у других — дендриты способны проводить ПД. Сейчас мы рассмотрим только те свойства дендритов, которые связаны с их геометрией.

Читайте также:  Ощущение кома в горле — причины и лечение Smart Medical Center

Рассмотрим сначала те клетки, у которых дендриты невозбудимы. В этом случае «проблема дендритов» состоит в следующем. Синаптические окончания встречаются на самых разных частях дендритного дерева. Возьмем синапс, действующий на веточку, максимально удаленную от тела клетки. В этом случае условия для передачи электрического сигнала представляются весьма невыгодными. Действительно, в тонкой веточке велика константа затухания, а своим концом веточка «впадает» в более широкий участок дендрита, который «закорачивает» ее. В таких закороченных кабелях потенциал спадает особенно сильно, правда, в случае дендритов «закорачивание» является неполным и потенциал в конце веточки спадает не до нуля. В следующем отрезке дендрита условия для передачи сигнала тоже неблагоприятные, так как на его конце тоже находится более толстый дендритный ствол, и т. д. « В связи с этим возникло представление, что синапсы, расположенные на удаленных веточках, дают очень малый вклад в изменение потенциала тела клетки, в сотни раз меньший, чем такие же синапсы на теле клетки. Получается, что синапсы на конечных дендритных веточках бесполезны, что это «ошибка природы».

Один из вариантов решения «проблемы дендритов» состоит в том, что на тонких концевых веточках можно разместить много синапсов, тогда совместное действие этих синапсов будет заметно в теле клетки. Но для этого надо, чтобы все эти синапсы работали более или менее одновременно.

Все вышеприведенные рассуждения долгое время носили качественный характер. В 1965 г. в Теоретическом отделе Института биофизики АН СССР был разработан способ количественной оценки эффективности синапсов для нервных клеток любой формы и рассчитана эта эффективность для мотонейронов, пирамидных клеток коры и клеток мозжечка. Оказалось, что эффективность дендритных синапсов всего в 3—5 раз ниже, чем у синапсов, расположенных на теле нейрона. Чем это объясняется? Почему эффективность удаленных дендритных синапсов оказалось довольно велика? Чем меньше клетка, чем выше ее входное сопротивление, тем больший сдвиг потенциала создает синапс. У тоненьких дендритных веточек, удаленных от тела клетки, входное сопротивление оказалось большим, поэтому синапсы могут создавать в этих веточках сдвиги потенциала в десятки раз большие, чем в теле нейронов. И хотя при распространении к телу этот сдвиг потенциала действительно сильно затухает, его большая величина в значительной мере компенсирует затухание. Таким образом, дендритные синапсы оказались вовсе не ошибкой природы.

А теперь рассмотрим те нейроны, дендриты которых обладают возбудимой мембраной, способной к генерации ПД, У таких нейронов высокая эффективность синапса на тонкой веточке может привести к тому, что всего несколько синапсов доведут мембранный потенциал до порога и вызовут в этой веточке ПД, который начнет распространяться к телу клетки.

Читайте также:  Половцев вспомнил, как ушел к другой из своей семьи, и признался, что сейчас его бывшая и нынешняя ж

Его дальнейшая судьба зависит от свойств узлов ветвления, через которые ему надо пройти по пути к телу клетки, т. е. от геометрии дендрита. Клетка такого типа работает как сложная логическая схема. Пример такой клетки был приведен на рис, 45; эта клетка обнаруживает однонаправленные движения стимула. Клетки с более сложной формой дендритов могут работать как довольно хитрые вычислительные машины. «Такая система подобна системе голосования с большим числом участников, которые имеют неодинаковое число голосов. Окончательный результат, конечно, зависит от общего числа голосов, поданных «за» или «против», однако он в не меньшей степени зависит и от того, кто именно и вместе с кем из партнеров голосует»,— писали сотрудники Теоретического отдела Института биофизики АН СССР в 1966 г.

На дендритах многих нейронов имеются особые образования, так называемые шипики. Это структуры, похожие на грибы и состоящие из головки на тонкой ножке, которую чаще называют шейкой шипика. Шипик представляет собой выпячивание клеточной мембраны, а к его головке подходит терминаль от другого нейрона и образует на ней химический синапс.

Зачем нужны шипики — неизвестно. Число гипотез об их функциях огромно. Давайте посмотрим, что можно сказать о возможных функциях шипиков, исходя из геометрических соображений. При этом рассмотрим два ра-рианта: мембрана головки шипика невозбудима; мембрана головки шипика способна к генерации ПД.

Пусть шипик невозбудим. Его тоненькая шейка имеет высокое сопротивление. В результате в головке будет возникать большой постсинаптический потенциал, но его заметная часть будет теряться в шейке. Шипик будет работать как тоненькая дендритная веточка. Но зачем нужно такое устройство? Почему бы синапсу не располагаться прямо на дендрите?

Одним из способов работы тормозных синапсов является снижение входного сопротивления нейрона. Но ведь и возбуждающие синапсы тоже открывают ионные каналы и снижают входное сопротивление! Из-за этого возбуждающие синапсы тоже мешают друг другу. Особенно сильна такая помеха будет на тонких дендритах, у которых очень высоко входное сопротивление, так что активация нескольких синапсов вызовет заметное его снижение. Шипики должны существенно снижать взаимное влияние соседних синапсов, которые в этом случае отделены друг от друга шейками с высоким сопротивлением. Расчеты подтвердили, что хотя шипиковые синапсы каждый по отдельности менее эффективны, чем синапсы, расположенные прямо на дендрите, но при совместной работе эффект заметно выше.

Если же мембрана шипика возбудима, то он может работать как усилитель синаптической передачи. Из-за тонкости шейки входное сопротивление шипика очень велико и один синапс может вызвать в головке ПД, который пошлет в дендрит гораздо более сильный электрический ток, чем ток синапса. Интересно, что при таком режиме работы шипика должно существовать оптимальное сопротивление его шейки. Оно не должно быть слишком маленьким — тогда заметная часть синаптического тока будет утекать в дендритную веточку, сдвиг потенциала на мембране головки шипика не достигнет порогового значения и там не возникнет ПД. Но, с другой стороны, сопротивление шейки шипика не должно быть и слишком большим, иначе из головки шипика в дендрит будет течь слишком слабый ток и никакого усиления синаптического тока не получится. Недавно появились работы, показывающие, что геометрическая структура реальных шипиков близка к той,, которая по теоретическим расчетам является оптимальной.

До сих пор мы говорили о форме волокон и клеток или даже микроструктур клеток — шипиков. Посмотрим теперь на геометрию клеточных объединений.

Ссылка на основную публикацию
Что Такое Эндокардит Причины, Симптомы, Диагностика, Лечение
Инфекционный эндокардит лечение Возникновению инфекционного эндокардита способствует внедрение и размножение в организме человека патогенных микроорганизмов. При инфекционном эндокардите различными возбудителями...
Что такое аутоиммунные заболевания и почему они возникают
Аутоиммунные заболевания – что это, почему возникают, и можно ли с ними справиться? Комплексная диагностика заболевания в отдельных случаях не...
Что такое аутоиммунный тиреоидит щитовидной железы симптомы и лечение
Аутоиммунный тиреоидит щитовидной железы: причины, симптомы и лечение Щитовидная железа— особенный орган человека, который обеспечивает все виды обмена веществ осуществляющихся...
Что такое энцефалопатия и чем она опасна
Лечение резидуальной энцефалопатии Резидуальная энцефалопатия – это заболевание головного мозга, вызванное повреждением тканей и гибелью нервных клеток (нейронов). Встречается у...
Adblock detector