Строение бактериальной клетки под микроскопом, особенности и функции

Строение бактериальной клетки

Оболочки клетки

Большинство бактерий имеет три оболочки:

  • клеточная мембрана;
  • клеточная стенка;
  • слизистая капсула.

Непосредственно с содержимым клетки – цитоплазмой, соприкасается клеточная мембрана. Она тонкая и мягкая.

Клеточная стенка – плотная, более толстая оболочка. Её функция – защита и опора клетки. Клеточная стенка и мембрана имеют поры, через которые в клетку поступают необходимые ей вещества.

Многие бактерии имеют слизистую капсулу, которая выполняет защитную функцию и обеспечивает слипание с разными поверхностями.

Именно благодаря слизистой оболочке стрептококки (один из видов бактерий) прилипают к зубам и вызывают кариес.

Цитоплазма

Цитоплазма – это внутреннее содержимое клетки. На 75% состоит из воды. В цитоплазме находятся включения – капли жира и гликогена. Они являются запасными питательными веществами клетки.

Рис. 1. Схема строения бактериальной клетки.

Нуклеоид

Нуклеоид означает «подобный ядру». У бактерий нет настоящего, или, как ещё говорят, оформленного ядра. Это значит, что у них нет ядерной оболочки и ядерного пространства, как у клеток грибов, растений и животных. ДНК находится прямо в цитоплазме.

  • сохраняет наследственную информацию;
  • реализует эту информацию, управляя синтезом белковых молекул, характерных для данного вида бактерий.

Отсутствие истинного ядра – самая важная особенность бактериальной клетки.

Органоиды

В отличие от клеток растений и животных, бактерии не имеют органоидов, построенных из мембран.

Но клеточная мембрана бактерий в некоторых местах проникает в цитоплазму, образуя складки, которые называются мезосомой. Мезосома участвует в размножении клетки и обмене энергии и как бы заменяет мембранные органоиды.

Единственный органоид, имеющийся у бактерий – рибосомы. Это маленькие тельца, которые размещены в цитоплазме и синтезируют белки.

У многих бактерий есть жгутик, с помощью которого они перемещаются в жидкой среде.

Формы бактериальных клеток

Форма клеток бактерий различна. Бактерии в виде шара называются кокками. В виде запятой – вибрионами. Палочкообразные бактерии – бациллы. Спириллы имеют вид волнистой линии.

Рис. 2. Формы клеток бактерий.

Бактерии можно увидеть только под микроскопом. Средние размеры клетки 1-10 мкм. Встречаются бактерии длиной до 100 мкм. (1 мкм = 0,001 мм).

Спорообразование

При наступлении неблагоприятных условий бактериальная клетка переходит в спящее состояние, которое называется спорой. Причинами спорообразования могут быть:

  • пониженные и повышенные температуры;
  • засуха;
  • недостаток питания;
  • опасные для жизни вещества.

Переход происходит быстро, в течение 18-20 часов, а находиться клетка в состоянии споры может сотни лет. При восстановлении нормальных условий бактерия за 4-5 часов прорастает из споры и переходит в обычный режим жизнедеятельности.

Читайте также:  Гормоны надпочечников функции, действие на организм

Рис. 3. Схема образования споры.

Размножение

Бактерии размножаются делением. Период от рождения клетки до её деления составляет 20-30 минут. Поэтому бактерии широко распространены на Земле.

Что мы узнали?

Мы узнали, что, в общих чертах, клетки бактерий подобны клеткам растений и животных, они имеют мембрану, цитоплазму, ДНК. Основным отличием бактериальных клеток является отсутствие оформленного ядра. Поэтому бактерии называют доядерными организмами (прокариотами).

Функции нуклеоида бактерий

  • Главная
  • Микробиология
    • Что такое микробиология?
    • Предмет и задачи микробиологии
    • Систематика микроорганизмов
      • Определитель бактерий Берджи
      • Классификация бактерий Берджи
        • Таксономическая схема бактерий.
      • Классификация грибков
      • Классификация простейших
    • Основные этапы развития
    • История кафедры микробиологии СибГМУ
  • Морфология
    • Анатомия бак. клетки
      • Клеточная стенка
        • Грамположительные бактерии
        • Грамотрицательные бактерии
        • Кислотоустойчивые бактерии
      • Цитоплазматическая мембрана
      • Мезосомы
      • Цитоплазма
      • Жгутики
      • Рибосомы
      • Нуклеоид
      • Капсула
      • Плазмиды
      • Включения
      • Споры
      • Пили
    • Деление бактерий
    • Морфология микроорганизмов
      • Кокковидные
        • Микрококки
        • Диплококки
        • Тетракокки
        • Сарцины
        • Стрептококки
        • Стафилококки
      • Палочковидные
        • Энтеробактерии
        • Клостридии
        • Бациллы
        • Микобактерии
        • Франциеллы
        • Бордетеллы
        • Бруцеллы
      • Извитые формы
        • Вибрионы
        • Хеликобактерии, кампилобактерии
        • Спириллы
        • Спирохеты
      • Нитевидные
        • Актиномицеты
      • Риккетсии,хламидии,микоплазмы
        • Риккетсии
        • Хламидии
        • Микоплазмы
      • Микробов-эукариотов
        • Морфология грибков
          • Бластомицеты
          • Гифомицеты
        • Морфология простейших
          • Тип Sarcomastigophora
          • Тип Ciliophora
          • Тип Apicomplexa
  • Методы микроскопии
    • Световая микроскопия
      • Иммерсионная световая
      • Люминесцентная
      • Темнопольная
      • Фазово-контрастная
    • Электронная микроскопия
      • Обычный просвечивающий
      • Растровый
  • Методы окраски
    • Простые методы
    • Сложные методы
      • по Граму
      • по Цилю-Нильсену
      • по Ожешко
      • по Нейссеру
      • по Бурри
      • по Бурри-Гинсу
      • по Морозову
      • по Романовскому-Гимзе
  • Питательные среды
    • Дифференциально-диагностические среды
      • Среда Эндо
      • Среда Гисса
      • Среды Ресселя
      • Среда Клиглера
  • Главная
  • Микробиология
    • Что такое микробиология?
    • Предмет и задачи микробиологии
    • Систематика микроорганизмов
      • Определитель бактерий Берджи
      • Классификация бактерий Берджи
        • Таксономическая схема бактерий.
      • Классификация грибков
      • Классификация простейших
    • Основные этапы развития
    • История кафедры микробиологии СибГМУ
  • Морфология
    • Анатомия бак. клетки
      • Клеточная стенка
        • Грамположительные бактерии
        • Грамотрицательные бактерии
        • Кислотоустойчивые бактерии
      • Цитоплазматическая мембрана
      • Мезосомы
      • Цитоплазма
      • Жгутики
      • Рибосомы
      • Нуклеоид
      • Капсула
      • Плазмиды
      • Включения
      • Споры
      • Пили
    • Деление бактерий
    • Морфология микроорганизмов
      • Кокковидные
        • Микрококки
        • Диплококки
        • Тетракокки
        • Сарцины
        • Стрептококки
        • Стафилококки
      • Палочковидные
        • Энтеробактерии
        • Клостридии
        • Бациллы
        • Микобактерии
        • Франциеллы
        • Бордетеллы
        • Бруцеллы
      • Извитые формы
        • Вибрионы
        • Хеликобактерии, кампилобактерии
        • Спириллы
        • Спирохеты
      • Нитевидные
        • Актиномицеты
      • Риккетсии,хламидии,микоплазмы
        • Риккетсии
        • Хламидии
        • Микоплазмы
      • Микробов-эукариотов
        • Морфология грибков
          • Бластомицеты
          • Гифомицеты
        • Морфология простейших
          • Тип Sarcomastigophora
          • Тип Ciliophora
          • Тип Apicomplexa
  • Методы микроскопии
    • Световая микроскопия
      • Иммерсионная световая
      • Люминесцентная
      • Темнопольная
      • Фазово-контрастная
    • Электронная микроскопия
      • Обычный просвечивающий
      • Растровый
  • Методы окраски
    • Простые методы
    • Сложные методы
      • по Граму
      • по Цилю-Нильсену
      • по Ожешко
      • по Нейссеру
      • по Бурри
      • по Бурри-Гинсу
      • по Морозову
      • по Романовскому-Гимзе
  • Питательные среды
    • Дифференциально-диагностические среды
      • Среда Эндо
      • Среда Гисса
      • Среды Ресселя
      • Среда Клиглера

Микробиология

Предметом изучения микробиологии

Нуклеоид

По строению ядерный аппарат прокариотов значительно отличается от ядра эукариотических клеток. Он представлен нуклеоидом (генофором), который лишен оболочки и включает в себя почти всю ДНК бактерии. Бактериальная хромосома состоит из одной двунитевой суперспирализованной молекулы ДНК кольцевой формы плотно уложенной наподобие клубка. В отличие от эукариот нуклеоид бактерий не имеет ядерной оболочки, ядрышка, основных белков (гистонов) и не делится митозом. В нем содержится также небольшое количество РНК и белков. Наследственная информация у бактерий хранится в форме последовательности нуклеотидов ДНК, которая определяет последовательность аминокислотных остатков в молекуле белка. Каждому белку соответствует свой ген. Бактериальная хромосома содержит до 4000 отдельных генов. Размеры бактериальной хромосомы у различных представителей царства Procaryotae варьируют от 3х10^8 до 2,5х10^9 Д. Бактериальная клетка гаплоидна, а удвоение хромосомы всегда сопровождается ее делением.

Читайте также:  МРТ детям Сделать МРТ ребёнку

Нуклеоид выявляется в световом микроскопе после окраски специфическими для ДНК методами (по Романовскому-Гимзе). На электронограммах ультратонких срезов бактерий нуклеоид имеет вид светлых зон с фибриллярными, нитевидными структурами ДНК, связанной определенными участками с ЦПМ или мезосомой, участвующими в репликации хромосомы.

Генетическая система бактерий представлена ядерными и внеядерными структурами. Кроме нуклеоида в бактериальной клетке имеются внехромосомные факторы наследственности – плазмиды, представляющие собой ковалентно замкнутые кольца ДНК.

Clostridium perfringens. Электронная микроскопия. Клеточная стенка (КС) гладкая, не имеет закономерной слоистости. Цитоплазматическая мембрана (ЦМ) трехслойная, волнистая. В цитоплазме клетки видны петлеобразные мембранные структуры (МС). Нуклеоид (Н) имеет вид осмиофобной зоны, заполненной тонкими фибриллами. х120000.«Авакян А.А., Кац Л.Н., Павлова И.Б. Атлас анатомии бактерий, патогенных для человека и животных. М «Медицина».-1972.-183 с.»

Нуклеоид

ЦИТОПЛАЗМАТИЧЕСКАЯ МЕМБРАНА (ЦПМ)

ЦПМ толщиной составляет 7-10 нм окружает цитоплазму бактериальной клетки и состоит из двойного слоя фосфолипидов,нейтральных липидов, гликолипидов и др., функция которых – поддержание механической стабильности ЦПМ и придание ей гидрофобных свойств.

Мембранные белки (интегральные и периферические) асимметрично включены в бислой фосфолипидов, их подразделяют на структурные и функциональные (ферменты).

Функции ЦПМ:

1) внутренний осмотический барьер, регулирующий избирательное поступление в клетку и выделение наружу различных веществ,

2) транспортная функция;

3) биосинтетическая активность;

4) энергетическая и дыхательная функции;

5) присоединение хромосомы и плазмид.

При инвагинации ЦПМ возникают внутриклеточные мембранные образования – мезосомы:

По расположению в клетке мезосомы:

2) ядерные (нуклеидосомы),

ВНУТРИКЛЕТОЧНЫЕ СТРУКТУРЫ БАКТЕРИЙ

Рибосомы (70 S состоят из РНК (60-65%) и белка (35-40%), являются местом синтеза белка.

Хроматофорыу фотосинтезирующих бактерийв виде трубочек, пузырьков, сдвоенных мембранных пластин – тилакоидов.

Хлоросомы – продолговатой формы структуры, в которых находятся бактериохлорофиллы.

Фикобилисомы– полусферические или палочковидные гранулы, расположенные на фотосинтетических мембранах, содержат водорастворимые пигменты – фикобилипротеиды.

Карбоксисомы(или полиэдральные тела) – четырех- или шестигранные включения содержат фермент рибулозодифосфаткарбоксилазу.

Газовые вакуоли (или аэросомы)состоят из газовых пузырьков и являются регуляторами плавучести водных бактерий.

Читайте также:  Возможности применения Канефрона Н при лечении хронического цистита uMEDp

Магнитосомыубактерий, обладающих магнитотаксисом.

ВНУТРИЦИТОПЛАЗМАТИЧЕСКИЕ ВКЛЮЧЕНИЯ БАКТЕРИЙ

Цитоплазма –среда, связывающая внутриклеточные структуры в единую систему. Цитозоль– полужидкая коллоидная масса из воды (70-80 %) , РНК, ферментов.

Запасные веществаобразуются в клетке в результате обмена веществ. По консистенции их делят на на жидкие (поли-β-оксибутират), полужидкие (сера) и твердые (гликоген):

1. Безазотистые органические запасные вещества

4. Углеводородные гранулы

5. Поли-β-оксимасляная кислота (поли-β-оксибутират)обнаружена только у прокариот

6. Полифосфаты (волютин, или метахроматиновые гранулы)

7. Включения серы

8. Включения карбоната кальция

9. Параспоральные включения

ГЕНЕТИЧЕСКИЙ АППАРАТ БАКТЕРИЙ

Нуклеоид

Особенности генетического аппарат прокариот:

1) ядра бактерий не имеют ядерной оболочки и ДНК находится в контакте с цитоплазмой;

2) нет разделения на хромосомы и нить ДНК называется бактериальной хромосомой;

3) отсутствует митоз и мейоз.

Ядерный аппарат бактерий называют бактериальным ядром, или нуклеоидом.

Бактериальная хромосома в форме замкнутого кольца – это гигантская суперспирализованная молекула ДНК, не связанная с гистонами. Репликация ДНК осуществляется полуконсервативно.

В цитоплазме – линейные или кольцевые молекулы внехромосомной ДНК– плазмиды (внехромосомные детерминанты),незамкнутые – релаксированные,замкнутые – сверхспиральные.

Основные свойства бактериальных плазмид:

– способность к автономной репликации. Плазмиды со строгим контролем репликациииослаблен­ным,

– конъюгативность (трансмиссивность) –спо­собность к самопередаче,

– фенотипические признаки, которые они придают бактериям: устойчивость к антибиотикам, катионам, анионам, мутагенам, бактериоцинам. Клетки с плазмидами способны вызывать биодеградацию веществ, синтезировать бактериоцины, гемолизин, фибринолизин, токсины, антигены, анти­биотики, инсектициды, пигменты, поверхностные антигены; приобре­тают способность к конъюгации; индуцируют опухоли у растений; осу­ществляют рестрикцию и модификацию ДНК.

Плазмиды могут объеди­няться друг с другом или с фаговыми ДНК, образуя коинтеграты.В одной клетке может находиться несколько типов плазмид. Если плазмиды не могут сосуществовать в одной клетке, их называют несовместимыми.

2) интегрированные репродуцируются одновременно с бактериальной хромосомой – эписомы.

Плазмиды:

1) трансмиссивные (F- и R-плазмиды), передаваемые при конъюгации;

Функцииплазмид:

1. Регуляторные компенсируют дефекты метаболизма, встраиваясь в поврежденный геном.

2. Кодирующие привносят в клетку новую генетическую информацию.

Виды плазмид:

1. F-плазмиды контролируют синтез F-пилей при конъюгации.

2. R-плазмиды – фактор множесственной лекарственной устойчивости.

3. Неконъюгативные плазмиды.

4. Плазмиды бактериоциногении – способности бактерий про­дуцировать специфические вещества (колицинами илибактериоцинами), вызывающие гибель бактерий филогенетически родственных видов.

5. Плазмиды патогенности контролируют вирулентные свойства.

6. Скрытые (криптические) плазмиды.

7. Плазмиды биодеградации.

Бактериальные плазмиды – объекты для изучения репликации и транскрипции ДНК, их используют в генной инженерии и селекции микробов.

Мигрирующие генетические элементы – отдельные участки ДНК, осуществляющие собственный перенос (транспозицию) внутри генома. Их виды:

1. Вставочные (инсерционные) последовательности (IS-элементы).

Ссылка на основную публикацию
Стресс — это психология виды, причины, симптомы, лечение
Хронический стресс: как его преодолеть и почему не стоит закрывать глаза на симптомы состояния Хронический стресс может привести к неврозам,...
Стволовые клетки пуповинной крови
Гистероскопия и выскабливание Выскабливание (чистка)Большинство женщин в своей жизни сталкиваются с ситуацией, когда гинеколог после обследования назначает выскабливание. Часто эту...
Стволовые клетки человека превратили в предшественники яйцеклеток
Половые клетки - мужские и женские Любой взрослый человек прекрасно знает, что новая жизнь зарождается после встречи мужской и женской...
Стресс, мигрень и язва желудка как хроническое напряжение приводит к развитию психосоматических забо
Психосоматика мигрени у женщин Недавно мы говорили о головной боли напряжения. Сегодня расскажу, почему появляется психосоматика мигрени у женщин на...
Adblock detector