Угарный газ, свойства, физиологическое действие на организм

Закись углерода

Молекула CO, так же, как и изоэлектронная ей молекула азота, имеет тройную связь. Так как эти молекулы сходны по строению, то и свойства их также схожи — очень низкие температуры плавления и кипения, близкие значения стандартных энтропий и т. п.

В рамках метода валентных связей строение молекулы CO можно описать формулой :C≡O:, причём третья связь образована по донорно-акцепторному механизму, где углерод является акцептором электронной пары, а кислород — донором.

Согласно методу молекулярных орбиталей электронная конфигурация невозбуждённой молекулы CO σ 2 Oσ 2 zπ 4 x, yσ 2 C. Тройная связь образована σ—связью, образованной за счёт σz электронной пары, а электроны дважды вырожденного уровня πx, y соответствуют двум σ—связям. Электроны на несвязывающих σC—орбитали и σO—орбитали соответствуют двум электронным парам, одна из которых локализована у атома углерода, другая — у атома кислорода.

Благодаря наличию тройной связи молекула CO весьма прочна (энергия диссоциации 1069 кДж/моль, или 256 ккал/моль, что больше, чем у любых других двухатомных молекул) и имеет малое межъядерное расстояние (dC≡O=0,1128 нм или 1,13Å).

Молекула слабо поляризована, электрический момент её диполя μ = 0,04·10 -29 Кл·м (направление дипольного момента O — →C + ). Ионизационный потенциал 14,0 в, силовая константа связи k = 18,6.

История открытия

Монооксид углерода был впервые получен французским химиком Жаком де Лассоном в 1776 при нагревании оксида цинка с углём, но первоначально его ошибочно приняли за водород, так как он сгорал синим пламенем. То, что в состав этого газа входит углерод и кислород, выяснил в 1800 английский химик Вильям Крукшэнк. Моноксид углерода вне атмосферы Земли впервые был обнаружен бельгийским ученым М. Мижотом (M. Migeotte) в 1949 году по наличию основной колебательно-вращательной полосы в ИК спектре Солнца.

Монооксид углерода в атмосфере Земли

Различают природные и антропогенные источники поступления в атмосферу Земли. В естественных условиях, на поверхности Земли, CO образуется при неполном анаэробном разложении органических соединений и при сгорании биомассы, в основном в ходе лесных и степных пожаров. Монооксид углерода образуется в почве как биологическим путём (выделение живыми организмами), так и небиологическим. Экспериментально доказано выделение монооксида углерода за счёт обычных в почвах фенольных соединений, содержащих группы OCH3 или OH в орто- или пара-положениях по отношению к первой гидроксильной группе.

Общий баланс продуцирования небиологического CO и его окисления микроорганизмами зависит от конкретных экологических условий, в первую очередь от влажности и значения pH. Например, из аридных почв монооксид углерода выделяется непосредственно в атмосферу, создавая таким образом локальные максимумы концентрации этого газа.

В атмосфере СО является продуктом цепочек реакций с участием метана и других углеводородов (в первую очередь, изопрена).

Основным антропогенным источником CO в настоящее время служат выхлопные газы двигателей внутреннего сгорания. Оксид углерода образуется при сгорании углеводородного топлива в двигателях внутреннего сгорания при недостаточных температурах или плохой настройке системы подачи воздуха (подается недостаточное количество кислорода для окисления CO в CO2). В прошлом значительную долю антропогенного поступления CO в атмосферу обеспечивал светильный газ, использовавшийся для освещения помещений в XIX веке. По составу он примерно соответствовал водяному газу, то есть содержал до 45 % монооксида углерода. В настоящее время в коммунальной сфере этот газ вытеснен гораздо менее токсичным природным газом (низшие представители гомологического ряда алканов — пропан и др.)

Поступление CO от природных и антропогенных источников примерно одинаково.

Монооксид углерода в атмосфере находится в быстром круговороте: среднее время его пребывания составляет около 0,1 года, окисляясь гидроксилом до диоксида углерода.

Получение

Промышленный способ

1. Образуется при горении углерода или соединений на его основе (например, бензина) в условиях недостатка кислорода:

2. или при восстановлении диоксида углерода раскалённым углём:

Эта реакция часто происходит при печной топке, когда слишком рано закрывают печную заслонку (пока окончательно не прогорели угли). Образующийся при этом монооксид углерода, вследствие своей ядовитости, вызывает физиологические расстройства («угар») и даже смерть (см. ниже), отсюда и одно из тривиальных названий — «угарный газ». Картина протекающих в печи реакций приведена на схеме.

Реакция восстановления диоксида углерода обратимая, влияние температуры на состояние равновесия этой реакции приведено на графике. Протекание реакции вправо обеспечивает энтропийный фактор, а влево — энтальпийный. При температуре ниже 400°C равновесие практически полностью сдвинуто влево, а при температуре выше 1000°C вправо (в сторону образования CO). При низких температурах скорость этой реакции очень мала, поэтому монооксид углерода при нормальных условиях вполне устойчив. Это равновесие носит специальное название равновесие Будуара.

3. Смеси монооксида углерода с другими веществами получают при пропускании воздуха, водяного пара и т. п. сквозь слой раскалённого кокса, каменного или бурого угля и т. п. (см. генераторный газ, водяной газ, смешанный газ, синтез-газ).

Лабораторный способ

1. Разложение жидкой муравьиной кислоты под действием горячей концентрированной серной кислоты, либо пропуская муравьиную кислоту над оксидом фосфора P2O5. Схема реакции:

Можно также обработать муравьиную кислоту хлорсульфоновой. Эта реакция идёт уже при обычной температуре по схеме:

2. Нагревание смеси щавелевой и концентрированной серной кислот. Реакция идёт по уравнению:

Выделяющийся совместно с CO диоксид углерода можно удалить, пропустив смесь через баритовую воду.

3. Нагревание смеси гексацианоферрата (II) калия с концентрированной серной кислотой. Реакция идёт по уравнению:

Физиологическое действие, токсичность

Угарный газ очень опасен, так как не имеет запаха и вызывает отравление и даже смерть. Признаками отравления служат головная боль, головокружение и потеря сознания. Токсическое действие монооксида углерода основано на том, что он связывается с гемоглобином крови прочнее, чем кислород (при этом образуется карбоксигемоглобин), таким образом, блокируя процессы транспортировки кислорода и клеточного дыхания. Предельно допустимая концентрация монооксида углерода в воздухе промышленных предприятий составляет 0,02 мг/л. Концентрация более 0,1 % — смертельна. В выхлопе бензинового автомобиля допускается до 1,5-3 %.

Опытами на молодых крысах выяснено, что 0,02-процентная концентрация CO в воздухе замедляет их рост и снижает активность по сравнению с контрольной группой. Интересно то, что крысы, живущие в атмосфере с повышенным содержанием CO, предпочитали воде и раствору глюкозы спиртовой раствор в качестве питья (в отличие от контрольной группы, особи в которой предпочитали воду).

Помощь при отравлении монооксидом углерода: пострадавшего следует вынести на свежий воздух, полезно также кратковременное вдыхание паров нашатырного спирта.

TLV (предельная пороговая концентрация, США): 25 ПДКр.з. по Гигиеническим нормативам ГН 2.2.5.1313—03 составляет 20 мг/м³

Защита от монооксида углерода

CO очень слабо поглощается активированным углём обычных фильтрующих противогазов, поэтому для защиты от него применяется специальный фильтрующий элемент (он может также подключаться дополнительно к основному) — гопкалитовый патрон. Гопкалит представляет собой катализатор, способствующий окислению CO в CO2 при нормальных температурах. Недостатком использования гопкалита является то, что при его применении приходится вдыхать нагретый в результате реакции воздух.

Читайте также:  Молочнокислые бактерии значение, среда обитания

Свойства

Монооксид углерода представляет собой бесцветный газ без вкуса и запаха. Так называемый «запах угарного газа» на самом деле представляет собой запах органических примесей.

Свойства монооксида углерода

Стандартная энергия Гиббса образования ΔG −137,14 кДж/моль (г) (при 298 К)
Стандартная энтропия образования S 197,54 Дж/моль·K (г) (при 298 К)
Стандартная мольная теплоёмкость Cp 29,11 Дж/моль·K (г) (при 298 К)
Энтальпия плавления ΔHпл 0,838 кДж/моль
Энтальпия кипения ΔHкип 6,04 кДж/моль
Критическая температура tкрит −140,23°C
Критическое давление Pкрит 3,499 МПа
Критическая плотность ρкрит 0,301 г/см 3

Основными типами химических реакций, в которых участвует монооксид углерода, являются реакции присоединения и окислительно-восстановительные реакции, в которых он проявляет восстановительные свойства.

При комнатных температурах CO малоактивен, его химическая активность значительно повышается при нагревании и в растворах (так, в растворах он восстанавливает соли Au, Pt, Pd и других до металлов уже при комнатной температуре. При нагревании восстанавливает и другие металлы, например CO + CuO → Cu + CO2↑. Это широко используется в пирометаллургии. На реакции CO в растворе с хлоридом палладия основан способ качественного обнаружения CO, см. ниже).

Окисление СО в растворе часто идёт с заметной скоростью лишь в присутствии катализатора. При подборе последнего основную роль играет природа окислителя. Так, KMnO4 быстрее всего окисляет СО в присутствии мелкораздробленного серебра, K2Cr2O7 — в присутствии солей ртути, KClO3 — в присутствии OsO4. В общем, по своим восстановительным свойствам СО похож на молекулярный водород.

Ниже 830°C более сильным восстановителем является CO, — выше — водород. Поэтому равновесие реакции:

до 830°С смещено вправо, выше 830°C влево.

Интересно, что существуют бактерии, способные за счёт окисления СО получать необходимую им для жизни энергию.

Монооксид углерода горит синим пламенем (температура начала реакции 700°C) на воздухе:

Температура горения CO может достигать 2100°C, она является цепной, причём инициаторами служат небольшие количества водородсодержащих соединений (вода, аммиак, сероводород и др.)

Благодаря такой хорошей теплотворной способности, CO является компонентом разных технических газовых смесей (см., например генераторный газ), используемых, в том числе, для отопления.

Монооксид углерода реагирует с галогенами. Наибольшее практическое применение получила реакция с хлором:

Реакция экзотермическая, её тепловой эффект 113 кДж, в присутствии катализатора (активированный уголь) она идёт уже при комнатной температуре. В результате реакции образуется фосген — вещество, получившее широкое распространение в разных отраслях химии (а также как боевое отравляющее вещество). По аналогичным реакцииям могут быть получены COF2 (карбонилфторид) и COBr2 (карбонилбромид). Карбонилиодид не получен. Экзотермичность реакций быстро снижается от F к I (для реакций с F2 тепловой эффект 481 кДж, с Br2 — 4 кДж). Можно также получать и смешанные производные, например COFCl (подробнее см. галогенпроизводные угольной кислоты).

Реакцией CO с F2, кроме карбонилфторида можно получить перекисное соединение (FCO)2O2. Его характеристики: температура плавления −42°C, кипения +16°C, обладает характерным запахом (похожим на запах озона), при нагревании выше 200°C разлагается со взрывом (продукты реакции CO2, O2 и COF2), в кислой среде реагирует с иодидом калия по уравнению:

Монооксид углерода реагирует с халькогенами. С серой образует сероксид углерода COS, реакция идёт при нагревании, по уравнению:

Получены также аналогичные селеноксид COSe и теллуроксид COTe.

C переходными металлами образует очень летучие, горючие и ядовитые соединения — карбонилы, такие как Cr(CO)6, Ni(CO)4, Mn2CO10, Co2(CO)9 и др.

Как указано выше, монооксид углерода незначительно растворяется в воде, однако не реагирует с ней. Также он не вступает в реакции с растворами щелочей и кислот. Однако с расплавами щелочей вступает в реакцию:

Интересна реакция монооксида углерода с металлическим калием в аммиачном растворе. При этом образуется взрывчатое соединение диоксодикарбонат калия:

2K + 2CO → K + O — —C2—O — K +

Реакцией с аммиаком при высоких температурах можно получить важное для промышленности соединение — циановодород HCN. Реакция идёт в присутствии катализатора (оксид тория ThO2) по уравнению:

Определение монооксида углерода

Качественно можно определить наличие CO по потемнению растворов хлорида палладия (или пропитанной этим раствором бумаги). Потеменение связано с выделением мелкодисперсного металлического палладия по схеме:

Эта реакция очень чувствительная. Стандартный раствор 1 грамма хлорида палладия на литр воды.

Количественное определение монооксида углерода основано на иодометрической реакции:

Применение

  • Моноксид углерода применяется для обработки мяса животных и рыбы, придает им ярко красный цвет и вид свежести, не изменяя вкуса (en:Clear smoke или en:Tasteless smoke технология). Допустимая концентрация CO равна 200 мг/кг мяса.
  • Инсульт (ОНМК) — новые методы лечения.

См. также

  • Водяной газ
  • Выхлопные газы
  • Генераторный газ
  • Диоксид углерода
  • Диоксид триуглерода
  • Синтез-газ
  • Смешанный газ
  • Отравление угарным газом
  • Сигареты

Литература

  • Ахметов Н. С. Общая и неорганическая химия. 5-е изд., испр. — М.: Высш. шк.; 2003 ISBN 5-06-003363-5
  • Некрасов Б. В. Основы общей химии. Т. I, изд. 3-е, испр. и доп. Изд-во «Химия», 1973 г. Стр. 495—497, 511—513
  • Химия: Справ. из./В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Перс. с нем. 2-е изд., стереотип. — М.:Химия, 2000 ISBN 5-7245-0360-3 (рус.)

Ссылки

  • Международная карта химической безопасности для монооксида углерода

Wikimedia Foundation . 2010 .

  • Окись кобальта
  • Окись фтора

Смотреть что такое «Окись углерода» в других словарях:

Окись углерода — см. Оксид углерода … Российская энциклопедия по охране труда

ОКИСЬ УГЛЕРОДА — (carbon monoxide) бесцветный, практически без запаха, очень ядовитый газ. При попадании в организм он связывается с гемоглобином, содержащимся в эритроцитах крови, с образованием карбоксигемоглобина, имеющего ярко красную окраску. Это соединение… … Толковый словарь по медицине

окись углерода — anglies monoksidas statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Bespalvės, bekvapės nuodingosios dujos, kurios susidaro trūkstant deguonies degimo metu. Virimo temperatūra 192 °C. Apsinuodijimo požymiai: lengvai apsinuodijus –… … Apsaugos nuo naikinimo priemonių enciklopedinis žodynas

окись углерода — anglies monoksidas statusas T sritis ekologija ir aplinkotyra apibrėžtis Nevisiško degimo produktas – bespalvės, beskonės, bekvapės nuodingos dujos (CO). Į atmosferą patenka su kūryklų dujomis, automobilių deginiais (juose anglies monoksido yra… … Ekologijos terminų aiškinamasis žodynas

окись углерода — (син. угарный газ) газ без цвета и запаха, образующийся при неполном сгорании органических соединений; обладает сильным токсическим действием, обусловленным способностью вытеснять кислород из оксигемоглобина, образуя карбоксигемоглобин … Большой медицинский словарь

Окись углерода — (угарный газ) см. Углерод … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Окись углерода — – газ без цвета, запаха образуется при неполном сгорании органических соединений; вытесняет кислород из оксигемоглобина, образуя карбоксигемоглобин; угарный газ … Словарь терминов по физиологии сельскохозяйственных животных

окись углерода — угарный газ … Cловарь химических синонимов I

Читайте также:  Зачем перед МРТ пить Но-шпу

Окись Углерода (Carbon Monoxide) — бесцветный, практически без запаха, очень ядовитый газ. При попадании в организм он связывается с гемоглобином, содержащимся в эритроцитах крови, с образованием карбоксигемоглобина, имеющего ярко красную окраску. Это соединение является химически … Медицинские термины

ОКИСЬ — ОКИСЬ, окиси, жен. (хим.). Промежуточная степень окисления вещества в отличие от закиси низшей, и перекиси высшей степени окисления. Окись углерода (угарный чад). Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

Оксид — Oxide

Оксид / ɒ к с aɪ д / представляет собой химическое соединение , которое содержит по меньшей мере один кислородный атом и один другой элемент в своей химической формуле . Сам «оксид» — это дианион кислорода, атом O 2– . Металлические оксиды , таким образом , как правило , содержат анион из кислорода в степени окисления -2. Большая часть земной коры состоит из твердых оксидов, в результате окисления элементов кислородом воздуха или воды. При сжигании углеводородов образуются два основных оксида углерода : монооксид углерода и диоксид углерода . Даже материалы, которые считаются чистыми элементами, часто имеют оксидное покрытие. Например, алюминиевая фольга образует тонкий слой Al 2 O 3 (называемый пассивирующим слоем ), который защищает фольгу от дальнейшей коррозии . Отдельные элементы часто могут образовывать несколько оксидов, каждый из которых содержит разное количество элемента и кислорода. В некоторых случаях они отличаются указанием количества атомов , как и в окиси углерода и двуокиси углерода , а также в других случаях путем указания элемента окисления , как в оксиде железа (II) и оксид железа (III) . Некоторые элементы могут образовывать множество различных оксидов, например оксидов азота .

Содержание

  • 1 Формирование
  • 2 Структура
    • 2.1 Оксиды металлов
    • 2.2 Молекулярные оксиды
  • 3 Сокращение
    • 3.1 Уменьшение углеродом
    • 3.2 Восстановление при нагревании
    • 3.3 Уменьшение за счет смещения
    • 3,4 Восстановление водородом
    • 3.5 Восстановление электролизом
  • 4 Гидролиз и растворение
  • 5 Восстановительное растворение
  • 6 Номенклатура и формулы
  • 7 Примеры оксидов
  • 8 Смотрите также
  • 9 Ссылки

Формирование

Из-за своей электроотрицательности кислород образует прочные химические связи почти со всеми элементами с образованием соответствующих оксидов. Благородные металлы (такие как золото или платина ) ценятся, потому что они сопротивляются прямому химическому соединению с кислородом, а такие вещества, как оксид золота (III), должны образовываться косвенным путем.

Два независимых пути коррозии элементов — это гидролиз и окисление кислородом. Сочетание воды и кислорода еще более агрессивно. Практически все элементы горят в атмосфере кислорода или богатой кислородом среде. В присутствии воды и кислорода (или просто воздуха) некоторые элементы — натрий — быстро реагируют с образованием гидроксидов. Отчасти по этой причине щелочные и щелочноземельные металлы не встречаются в природе в их металлической, т. Е. Самородной, форме. Цезий настолько реактивен с кислородом, что он используется в качестве газопоглотителя в вакуумных трубках , а растворы калия и натрия, так называемый NaK , используются для деоксигенатации и дегидратации некоторых органических растворителей. Поверхность большинства металлов состоит из оксидов и гидроксидов в присутствии воздуха. Хорошо известным примером является алюминиевая фольга , которая покрыта тонкой пленкой оксида алюминия, которая пассивирует металл, замедляя дальнейшую коррозию . Слой оксида алюминия может быть увеличен с помощью процесса электролитического анодирования . Хотя твердые магний и алюминий медленно реагируют с кислородом в STP, они, как и большинство металлов, горят на воздухе, создавая очень высокие температуры. Мелкозернистые порошки большинства металлов могут быть взрывоопасными на воздухе. Следовательно, они часто используются в твердотопливных ракетах .

В сухом кислороде железо легко образует оксид железа (II) , но для образования гидратированных оксидов трехвалентного железа Fe 2 O 3 — x (OH) 2 x , которые в основном содержат ржавчину, обычно требуется кислород и вода. Производство свободного кислорода фотосинтетическими бактериями около 3,5 миллиардов лет назад привело к осаждению железа из раствора в океанах в виде Fe 2 O 3 в экономически важном железорудном гематите .

Структура

Оксиды имеют ряд различных структур, от отдельных молекул до полимерных и кристаллических структур. В стандартных условиях оксиды могут варьироваться от твердых веществ до газов.

Оксиды металлов

Оксиды большинства металлов имеют полимерную структуру. Оксид обычно связывает три атома металла (например, структура рутила) или шесть атомов металла (структуры карборунда или каменной соли ). Поскольку МО-связи обычно прочные, а эти соединения представляют собой сшитые полимеры , твердые вещества обычно нерастворимы в растворителях, хотя и подвергаются воздействию кислот и оснований. Формулы часто обманчиво просты. Многие из них нестехиометрические .

Молекулярные оксиды

    Некоторые важные газообразные оксиды

Двуокись углерода является основным продуктом сгорания ископаемого топлива.

Окись углерода является продуктом неполного сгорания топлива на основе углерода и предшественником многих полезных химикатов.

Двуокись азота — проблемный загрязнитель от двигателей внутреннего сгорания.

Двуокись серы , основной оксид серы, испускается вулканами.

Закись азота («веселящий газ») — мощный парниковый газ, производимый почвенными бактериями.

Хотя большинство оксидов металлов являются полимерными , некоторые оксиды являются молекулами. Примерами молекулярных оксидов являются диоксид углерода и монооксид углерода . Все простые оксиды азота являются молекулярными, например NO, N 2 O, NO 2 и N 2 O 4 . Пятиокись фосфора — более сложный молекулярный оксид с обманчивым названием, настоящая формула которого — P 4 O 10 . Некоторые полимерные оксиды деполимеризуются при нагревании с образованием молекул, например, диоксид селена и триоксид серы . Тетроксиды встречаются редко. Более общие примеры: рутений , осмий тетраоксид и тетраоксид ксенон .

Известно много оксианионов, таких как полифосфаты и полиоксометаллаты . Оксикатионы встречаются реже, некоторыми примерами являются нитрозоний (NO + ), ванадил (VO 2+ ) и уранил ( UO 2+
2 ). Конечно, известны многие соединения как с оксидами, так и с другими группами. В органической химии к ним относятся кетоны и многие родственные карбонильные соединения. Для переходных металлов известно много оксокомплексов , а также оксигалогенидов .

Сокращение

Превращение оксида металла в металл называется восстановлением. Восстановление может быть вызвано многими реагентами. Многие оксиды металлов превращаются в металлы просто при нагревании.

Уменьшение углеродом

Металлы «извлекаются» из оксидов путем химического восстановления, то есть путем добавления химического реагента. Распространенным и дешевым восстановителем является углерод в виде кокса . Самый яркий пример — выплавка железной руды . Участвует много реакций, но упрощенное уравнение обычно отображается как:

2 Fe 2 O 3 + 3 C → 4 Fe + 3 CO 2

Оксиды металлов можно восстановить с помощью органических соединений. Этот окислительно-восстановительный процесс является основой для многих важных преобразований в химии, таких как детоксикация лекарств с помощью ферментов P450 и производство этиленоксида , который превращается в антифриз. В таких системах металлический центр передает оксидный лиганд органическому соединению с последующей регенерацией оксида металла, часто кислородом воздуха.

Восстановление при нагревании

Металлы с более низкой реактивностью можно уменьшить только путем нагревания. Например, оксид серебра разлагается при 200 ° C:

Уменьшение за счет смещения

Металлы с более высокой реакционной способностью вытесняют оксид металлов с меньшей реакционной способностью. Например, цинк более активен, чем медь , поэтому он замещает оксид меди (II) с образованием оксида цинка :

Zn + CuO → ZnO + Cu

Восстановление водородом

Помимо металлов, водород также может замещать оксиды металлов с образованием оксида водорода , также известного как вода:

Восстановление электролизом

Поскольку химически активные металлы образуют стабильные оксиды, некоторые оксиды металлов необходимо подвергнуть электролизу для восстановления. Это включает в себя оксид натрия , оксид калия , оксид кальция , оксид магния и оксид алюминия . Перед погружением в них графитовых электродов оксиды необходимо расплавить:

Читайте также:  Защемление нерва в ноге причины, симптомы, лечение

Гидролиз и растворение

Оксиды обычно реагируют с кислотами или основаниями , иногда с обоими. Те, которые вступают в реакцию только с кислотами, называются основными оксидами. Те, которые реагируют только с помощью оснований, называются «кислыми оксидами». Оксиды, которые реагируют с обоими, являются амфотерными . Металлы, как правило, образуют основные оксиды, неметаллы — кислые оксиды, а амфотерные оксиды образуются элементами, расположенными на границе между металлами и неметаллами ( металлоидами ). Эта реакционная способность является основой многих практических процессов, таких как извлечение некоторых металлов из их руд в процессе, называемом гидрометаллургией .

Оксиды более электроположительных элементов имеют тенденцию быть основными. Их называют основными ангидридами . Под воздействием воды они могут образовывать основные гидроксиды . Например, оксид натрия является основным — при гидратации он образует гидроксид натрия . Оксиды более электроотрицательных элементов имеют тенденцию быть кислыми. Их называют «ангидридами кислот»; добавляя воду, они образуют оксокислоты . Например, гептоксид дихлора представляет собой ангидрид кислоты; хлорная кислота — это полностью гидратированная форма. Некоторые оксиды могут действовать как кислоты и основания. Они амфотерные . Пример — оксид алюминия . Некоторые оксиды не проявляют поведения как кислоты или основания.

Ион оксида имеет формулу O 2- . Это сопр женное основание из гидроксида иона, OH — и встречается в ионных твердых веществ , таких как оксид кальция . O 2- нестабилен в водном растворе — его сродство к H + настолько велико (p K b

-38), что он отрывает протон от молекулы H 2 O растворителя :

O 2− + H 2 O → 2 ОН —

Константа равновесия вышеуказанных реакций pK eq

В 18 веке оксиды называли кальцием или кальцием в честь процесса прокаливания, использованного для производства оксидов. Позже Calx был заменен на oxyd.

Восстановительное растворение

Восстановительное растворение оксида переходного металла происходит, когда растворение сочетается с окислительно- восстановительным процессом . Например, оксиды трехвалентного железа растворяются в присутствии восстановителей, которые могут включать органические соединения. или бактерии Восстановительное растворение является неотъемлемой частью геохимических явлений, таких как цикл железа .

Восстановительное растворение не обязательно происходит на участке, где адсорбируется восстановитель. Вместо этого добавленный электрон проходит через частицу, вызывая восстановительное растворение в другом месте частицы.

Номенклатура и формулы

Иногда для обозначения оксидов используют соотношение металл-кислород. Таким образом, NbO будет называться монооксидом ниобия, а TiO 2 — диоксидом титана. Это название следует за греческими числовыми префиксами . В более ранней литературе и в настоящее время в промышленности оксиды называют добавлением суффикса -a к названию элемента. Следовательно, оксид алюминия, оксид магния и оксид хрома представляют собой соответственно Al 2 O 3 , MgO и Cr 2 O 3 .

К особым типам оксидов относятся пероксид O 2 2– и супероксид O 2 — . В таких соединениях кислород имеет более высокую степень окисления, чем оксид.

В химических формулах оксидов этих химических элементов в их самой высокой степени окисления предсказуемы и являются производными от числа валентных электронов для этого элемента. Даже химическая формула O 4 , тетракислорода , предсказуема как элемент группы 16 . Единственным исключением является медь , для которой оксидом с наивысшей степенью окисления является оксид меди (II), а не оксид меди (I) . Другим исключением является фторид , который существует не как F 2 O 7, как можно было бы ожидать, а как OF 2 .

Поскольку фтор более электроотрицателен, чем кислород, дифторид кислорода (OF 2 ) не представляет собой оксид фтора, а вместо этого представляет собой фторид кислорода.

Примеры оксидов

В следующей таблице приведены примеры обычно встречающихся оксидов. Приведено лишь несколько представителей, так как количество встречающихся на практике многоатомных ионов очень велико.

Парниковые газы

Парниковые газы — газы с высокой прозрачностью в видимом диапазоне и с высоким поглощением в тепловом инфракрасном диапазоне.
Подобно стеклу теплицы, газы в нашей атмосфере парниковые газы поддерживают жизнь на Земле, улавливая солнечное тепло.
Эти газы позволяют солнечным лучам согревать Землю, но предотвращают выход этого тепла из нашей атмосферы в космос.
Без естественных, улавливающих тепло газов — главным образом водяного пара, углекислого газа, метана, озона (O3) — Земля была бы слишком холодной (-18 о C), чтобы поддерживать жизнь.
Опасность заключается в быстром увеличении количества углекислого газа и других парниковых газов, которые усиливают этот естественный парниковый эффект.
В течение 1000 — летий мировое снабжение углеродом было стабильным, поскольку естественные процессы удаляли столько углерода, сколько они выделяли.
Ныне баланс нарушен по многим причинам:

  • сжигание ископаемого топлива,
  • вырубка лесов,
  • интенсивное сельское хозяйство.

Это приводит к стремительному накоплению парниковых газов, в основном углекислого газа.
Сегодня в атмосфере содержится на 42% больше CO2, чем в начале индустриальной эры.
Уровни метана (CH₄) и углекислого газа сейчас экстремально высокий за полмиллиона лет.
Киотский протокол охватывает 6 парниковых газов:

  • углекислый газ,
  • метан,
  • закись азота (N2O),
  • гидрофторуглероды,
  • перфторуглероды,
  • гексафторид серы (SF6).

Из этих 6 газов 3 имеют первостепенное значение, поскольку они тесно связаны с деятельностью человека.

Двуокись углерода является основной причиной изменения климата, особенно в результате сжигания ископаемого топлива.
Метан образуется естественным путем, когда растительность сжигается, переваривается или гниет без присутствия кислорода. Большое количество метана выбрасывается скотоводством, свалками, рисоводством, добычей нефти и природного газа.
Бурение на нефть и газ и гидроразрыв пласта (ГРП) являются основными источниками загрязнения метаном из-за утечек из поврежденного или неправильно установленного оборудования и преднамеренного выброса газа.
Закись азота, выделяемая химическими удобрениями и сжиганием ископаемого топлива, обладает потенциалом глобального потепления, в 310 раз превышающим потенциал углекислого газа.
Нарушая атмосферный баланс, который поддерживает климат, мы теперь наблюдаем экстремальные последствия по всему земному шару.
Климат меняется, и становится теплее.
Экстремальные погодные явления также становятся более распространенными.
Эти эффекты уже оказывают существенное влияние на экосистемы, экономику и сообщества.

Проблема в том, что человечеству кажется эта проблема чем-то далеким.
При нынешних скоростях роста выбросов температура может увеличиться на 2 °C, которые Межправительственная группа экспертов по изменению климата (IPCC) ООН определила в качестве верхнего предела, чтобы избежать опасных уровней, уже к 2036 г.
Но бизнес и прибыль — гораздо ближе.
Разговоры о декарбонизации экономики сразу прекращаются во время кризисов.
Добывающие страны неистово увеличивают добычу нефти и газа.
Во главе этого процесса идут власти США, которые не участвуют в Венском соглашении ОПЕК + по сокращению добычи нефти.
Но даже Венское соглашение во главу угла ставит не декарбонизацию экономики, а ребалансировку мирового рынка нефти с целью удержания равновесной цены на нефть в диапазоне 60-70 долл США/баррель.

Экологи считают, что ценообразование на углеродные энергоносители является наиболее эффективным способом уменьшения углеродного загрязнения, которое меняет наш климат.
Чем больше кто-то загрязняет, тем больше он должен платить.
Цена на углерод делает загрязнение более дорогим, а решения, такие как экологически чистая энергия и электромобили, более доступными.
Но на практике рекомендации экологов не выполняются.

Ссылка на основную публикацию
У меня в ухе появились какие то шарики, один на хряще,другой рядом с дыркой, третий чуть вышемочки у
Почему появился шарик в мочке уха? Лучшие советы, как убрать воспаление и шишку внутри Шарик в мочке уха — это...
Тревожный симптом патологии у новорожденных – клиника «9 месяцев»
Почему новорожденный ребенок постоянно плачет и как его успокоить Новорожденные и детки до года часто плачут без видимых причин. Но...
Тредмил Тест Показания Подготовка Особенности Проведения
Тредмил-тест Время обследования: в среднем 20 минут, длительность обследования зависит от физической подготовки пациента Подготовка: не требуетсяПротивопоказания: определяются на консультации.Заключение:...
У меня положительный тест на коронавирус
5 причин ложноположительного теста на беременность Если женщина пытается забеременеть или подозревает у себя беременность, подтвердить эти предположения может помочь...
Adblock detector